Accurate, smooth reproduction from 35 to 20,000 Hz,
+ 3 dB.
40 dB SPL at 30 feet with a 1-milliwatt input.
95 dB SPL at 10 feet at one-half rated power input.
Components: 12-inch low frequency loudspeaker, 8-inch midrange loudspeaker, 5-inch high frequency loudspeaker and ultra-high frequency transducer. Balance controls located behind the removable grille.
Oiled walnut or textured gray enclosure.

The 4315 Studio Monitor

The 4315, a compact studio monitor, is an extension of the research and development that produced JBL's latest high powered and most accurate monitors. The 4315 accurately reproduces the full range of musical fundamentals and overtones at sound pressure levels approaching those of the larger JBL systems.

The 4315 is characterized by exceptionally smooth, wide-band reproduction, clarity, transient response and a controlled dispersion pattern. Its performance is obtained through total integration of the components that make up the four-way system. Each transducer reproduces only that portion of the audio spectrum for which it is specifically designed, resulting in greatest utilization of each driver's frequency response, transient capability and dispersion characteristics. The effect is a true monitor system, compact in physical size, whose sound distribution pattern is such that the operator can be located relatively close to the enclosure.

Low Frequency Loudspeaker

The 12-inch low frequency loudspeaker features solid bass reproduction, smooth response well beyond its crossover frequency and excellent transient response combined with maximum efficiency consistent with the bandwidth of the driver. Mounted in a ported enclosure having an internal volume of 3.2 cubic feet, the unit is energized by a 13-pound magnetic assembly housing an Alnico V magnet. Closed construction and precise construction tolerances of the assembly concentrate a magnetic field of 12,000 gauss in the voice coil gap. A 4-inch voice coil, fabricated of copper wire milled to a ribbon and hand wound on edge, is mounted on a heat resistant support affixed to a rigid cone having optimum mass, density and rigidity. The cone is supported by a highly flexible termination that damps spurious resonances and allows the long, linear excursion necessary for high volume levels at very low frequencies.

Midrange Loudspeaker

The smooth performance and instantaneous transient response of the 8-inch midrange driver is responsible for the outstanding instrumental clarity and vocal definition of the system. A closed magnetic assembly, weighing 6½ pounds, concentrates all the energy of an Alnico V magnet in the voice coil gap. The 3-inch edgewound copper ribbon voice coil is suspended within a powerful magnetic field having a flux density of 10,200 gauss. The integrally stiffened cone is terminated with an exclusive JBL ring compliance that allows long excursions while maintaining linear travel.

High Frequency Loudspeaker

Smooth, widely dispersed high frequency reproduction is provided by a 5-inch cone transducer capable of considerable acoustic output and wide dispersion. It utilizes a ¾-inch diameter edgewound copper ribbon voice coil suspended within a powerful magnetic field of 16,500 gauss generated by a 2½-pound closed magnetic assembly containing an Alnico V magnet. The voice coil is edgewound for exceptional transient response and acoustic efficiency. Like the midrange loudspeaker, the unit is housed in a separate sub-chamber within the 4315 enclosure to prevent acoustical interaction with the other loudspeakers of the system.

Ultra-High Frequency Transducer

The exceptional clarity and realism of overtones lying above 8000 Hz is produced by the ultra-high frequency transducer. The unit consists of a compression driver and distraction horn specifically designed for reproduction and dispersion of energy at the extreme high end of the audio spectrum. The compression driver
consists of a 3%-pound magnetic assembly energized by an Alnico V magnet. Its 1.75-inch edgewound aluminum ribbon voice coil, suspended within a field having a flux density of 16,500 gauss, is attached to a heat resistant support bonded to a ring diaphragm pneumatically formed of .0022-inch thick aluminum stock. Output from the integral diffraction horn, which produces the unit’s wide high frequency dispersion pattern.

Frequency Dividing Network

The 4315 is provided with a high level, passive frequency dividing network having circuitry designed with consideration for the various performance characteristics of the drivers and their location on the enclosure baffle panel. The network has been designed for continuous high power application, capacitors are non-inductive, non-polarized types with high AC current capacity, and special inductors are used to minimize power losses within the network. Each inductor is calibrated on a sensitive electronic bridge and its value set precisely.

Enclosure

In keeping with current trends in studio design that encourage creativity, JBL studio monitor enclosures feature contemporary styling and are offered in two finishes, each with a complementary grille color. The enclosure, however, contributes much more than striking appearance. The low frequency loudspeaker is housed in a chamber having an internal volume of 3.2 cubic feet. The mid-range loudspeaker is enclosed in a separate, isolated sub-chamber having an internal volume of 0.1 cubic feet. The internal volume of the acoustic chambers and physical configuration of the ducted ports are carefully selected to properly load the low frequency and midrange loudspeakers for optimum bass response and to control cone excursion, thus minimizing distortion and maximizing power handling capacity of the drivers. To minimize resonance, the enclosure is constructed of dense %-inch thick stock with a F-ply baffle panel: all joints are carefully interlocked and glued; the back side, top and bottom panels are lined with acoustic damping material and are each stiffened by multiple braces glued and screwed to the panel and to the adjacent surfaces of the enclosure.

Test Conditions

The accompanying graph and specifications were compiled from measurements made under carefully controlled conditions. The loudspeaker system was mounted flush in the center of a large, flat baffle in a non-reverberant environment. Laboratory condenser microphones were suspended in a spherical pattern around the acoustic center of the system sufficiently distant to be out of the near field so that data taken would reflect the total output of the combined transducers. In keeping with accepted laboratory practice, all equipment was checked and calibrated before tests were run.